Glial and neuronal interactions during slow wave and paroxysmal activities in the neocortex.

نویسندگان

  • Florin Amzica
  • Marcello Massimini
چکیده

Increasing evidence suggests that glial cells are endowed with the ability to externalize their activity to the extracellular space and to neurons. Since the same activity is influenced by the extracellular ionic concentrations and the neurotransmitters released by neurons, it is suggested that neurons and glia entertain a continuous exchange of information. This behavior might have a particular significance during cortical oscillations. In this study we analyzed the time and voltage relationships within simultaneously recorded neuron-glia pairs during normal states characterized by a slow (<1 Hz) sleep oscillation and during paroxysmal epileptic discharges. Our data show that cortical neurons and glia display coherent activities during the tested spontaneous oscillations. The onset of the depolarizing phase of the slow oscillation started in neurons and followed with a lag of 88 ms in nearby (1-2 mm) recorded glial cells. In contrast, the beginning of the hyperpolarizing phase was initiated in glial cells, and neurons followed after 79 ms, suggesting that glial activities are not exclusively the reflection of neuronal ones. Moreover, we tested neuronal excitability that resulted in phase opposition with the glial membrane potential, establishing that only the first 30% of the neuronal depolarization is efficient for synaptic volleys within cortical neuronal networks. Seizures were associated with shorter time lags at onset of depolarization (1.8 ms) and with delayed glial offset (102 ms). The voltage slope and amplitude at the onset of the paroxysmal depolarizations were higher than in the case of the slow oscillation. Together with the variation of neuronal excitability, these results suggest that the glial uptake of K(+) contributes to the abridged duration of the paroxysmal depolarization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex.

This study investigated the fluctuations in the membrane potential of cortical neurons and glial cells during the slow sleep oscillation and spike-wave (SW) seizures. We performed dual neuron-glia intracellular recordings together with multisite field potential recordings from cortical suprasylvian association areas 5 and 7 of cats under ketamine-xylazine anesthesia. Electrical stimuli applied ...

متن کامل

Spike-wave complexes and fast components of cortically generated seizures. III. Synchronizing mechanisms.

The intracortical and thalamocortical synchronization of spontaneously occurring or bicuculline-induced seizures, consisting of spike-wave (SW) or polyspike-wave (PSW) complexes at 2-3 Hz and fast runs at 10-15 Hz, was investigated in cats under ketamine-xylazine anesthesia. We used single and dual simultaneous intracellular recordings from cortical areas 5 and 7, and extracellular recordings o...

متن کامل

Membrane capacitance of cortical neurons and glia during sleep oscillations and spike-wave seizures.

Dual intracellular recordings in vivo were used to disclose relationships between cortical neurons and glia during spontaneous slow (<1 Hz) sleep oscillations and spike-wave (SW) seizures in cat. Glial cells displayed a slow membrane potential oscillation (<1 Hz), in close synchrony with cortical neurons. In glia, each cycle of this oscillation was made of a round depolarizing potential of 1.5-...

متن کامل

Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo.

The ability of neuroglia to buffer local increases of extracellular K(+) has been known from in vitro studies. This property may confer on these cells an active role in the modulation and spreading of cortical oscillatory activities. We addressed the question of the spatial buffering in vivo by performing single and double intraglial recordings, together with measures of the extracellular K(+) ...

متن کامل

Cortical hyperpolarization-activated depolarizing current takes part in the generation of focal paroxysmal activities.

During paroxysmal neocortical oscillations, sudden depolarization leading to the next cycle occurs when the majority of cortical neurons are hyperpolarized. Both the Ca(2+)-dependent K(+) currents (I(K(Ca))) and disfacilitation play critical roles in the generation of hyperpolarizing potentials. In vivo experiments and computational models are used here to investigate whether the hyperpolarizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 12 10  شماره 

صفحات  -

تاریخ انتشار 2002